
Detection of Bluetooth Low Energy
Trackers

Alexandre DOYEN
Lannion, France

Supervisors: Katharina O.E. Müller; Bruno Rodrigez
Date of Submission: August 26, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

IN
T

E
R

N
S

H
IP

R
E

P
O

R
T

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Internship report
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Acknowledgments

To begin with, thank you to my supervisor, Katharina O.E. Müller, and the head of the
CSG team, Dr. Prof. Burkhard Stiller, without whom this internship not have taken
place. Therefore, thank you to Laurent d’Orazio who proposed me this internship subject
and helped me to find this.

Then, thank you very much to the CSG team for their welcome at Zürich. We have passed
a lot of funny moments, and you have helped me to be integrated into the team!

i

ii

Contents

Acknowledgments i

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 1

2 Understanding Bluetooth Low Energy protocol 3

2.1 Goal . 3

2.2 Capturing and analyzing packets . 3

2.2.1 Capturing packets . 3

2.2.2 Cleaning captures files . 4

2.3 Understanding BLE-LL packets . 5

2.3.1 Different type of PDUs . 5

2.3.2 Different kind of PDU payloads for advertising packets 6

3 Analysis about Apple AirTags 9

3.1 Generalities about Apple AirTags . 9

3.1.1 Operation for an average user . 9

3.1.2 Properties . 10

3.2 AirGuard . 10

3.3 Methodology . 11

3.4 Observations . 11

3.4.1 When Apple AirTag is unpaired . 11

iii

iv CONTENTS

3.4.2 When is paired and closest to the enabled iPhone 13

3.5 Summary . 13

4 Analysis about Tiles 15

4.1 Generalities about Tiles . 15

4.2 Technical aspects . 16

4.3 Detection of Tile tags . 16

5 OpenHaystack 17

5.1 Introduction . 17

5.2 Setup of the experimentation . 17

5.2.1 On the computer . 17

5.2.2 The fake tag’s setup . 18

5.3 Experimentation . 19

5.4 Summary . 21

6 Chipolo One Spot 23

6.1 Introduction . 23

6.2 Strategy to detect it in the air . 23

6.3 Experimentation to fake it with the Raspberry Pi 24

6.4 Generalization . 26

6.5 Summary . 26

7 Samsung Galaxy SmartTag+ 27

7.1 Introduction . 27

7.2 Analysis . 28

7.3 Summary . 29

CONTENTS v

8 Summary and Conclusions 31

8.1 Summary . 31

8.2 How to detect each tags ? . 31

8.2.1 Apple AirTag . 31

8.2.2 Tiles . 32

8.2.3 OpenHaystack and Chipolo One Spot 32

8.2.4 Samsung Galaxy SmartTag+ . 32

8.3 Conclusion . 33

Bibliography A

Glossary C

Acronyms E

List of Figures H

A Time diagrams of packet transmitted by when unpaired and iPhone on I

B Generation of the picture of OpenHaystack reports K

vi CONTENTS

Chapter 1

Introduction

1.1 Motivation

The topic was about the detection of BLE tackers around a user, such as Apple AirTags.
In fact, these trackers are very tiny and could be hidden in persons’ bags to track them.
So, it explains why we need to have means to detect trackers around us and to be warned
if there are suspect trackers.

1.2 Description of Work

To do that, the first thing was to understand the BLE protocol, and how devices com-
municate with each other. The final goal is to develop a Flutter application to let users
check if there are trackers around them.

Here is the list of trackers used for the project :

• Apple AirTag

• Samsung Galaxy SmartTag+

• Chipolo One Spot

• Tile

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Understanding Bluetooth Low Energy
protocol

2.1 Goal

The main goal of BLE is a specification of a wireless protocol to enable devices to com-
municate with each other with less energy than the ”standard Bluetooth”. It is important
to take note BLE is different from Bluetooth.

The key point is IOTs systems have to send only small data (Up to 256 bytes for each
packet [4]). So, to send these packets, the consumption of energy is reduced. Then, for
example, Apple says the battery of an Apple AirTag can work for more than one year[2],
and we will see Apple AirTags send a lot of small packets.

2.2 Capturing and analyzing packets

2.2.1 Capturing packets

To capture packets, I have used a Ubertooth One USB key to capture packets. This tool
lets me capture BLE packets that are in the area. The figure 2.1 shows that key.

3

4 CHAPTER 2. UNDERSTANDING Bluetooth Low Energy PROTOCOL

Figure 2.1: Ubertooth One USB key

Then, I have a capture file that contains each packet that the key has captured during
the time of the capture. The Wireshark software lets seeing these packets. The time of
captures was five minutes because it lets enough time to catch a lot of packet, and have
a representation of the type of packets sent in the environment.

To analyze data, there is a useful tool: R. It can be used to produce visualizations to help
to find some things and study some characteristics of devices.1.

2.2.2 Cleaning captures files

When we send data wirelessly, there is a lot of data loss. So, I focus my analysis on
well-formed packets. A well-formed packet is a packet where its size is coherent (Size of
packet = Size of header + Size of payloads), and its CRC check is good by using a specific
algorithm [9].

Here is the filter used in Wireshark to filter these packets :

(frame.protocols == "ppi:pcap_pktdata:user_dlt:btle:btcommon")

&& !(_ws.malformed) && !(btle.crc.incorrect)

1Lot of visualizations of this report have been made by R

2.3. UNDERSTANDING BLE-LL PACKETS 5

This filter permits to only keep well-formed packets, with coherent size and good CRC
check.

It is important to take note this filter keeps only from 60 to 80 percent of packets. It will
be important to understand the visualizations that will come after in this report.

2.3 Understanding BLE-LL packets

In this section, I explain how is built a BTLE Link-Layer packet with a focus on important
information for this project. The figure 2.2 present how is crafted a BLE-LL packet. The
first field, which is the preamble, is useless for us.2 The access address is also useless to
us. The PDU field contains very useful information for us because it contains payloads
and the advertising address. Finally, the CRC field stands to ensure the received packet
is the same as the sent packet.

Figure 2.2: Diagram of BLE-LE packet

So, let’s know more about PDU. PDU always begins with a header, which contains PDU
type, some flags, and height bits for the length of the payload. Figure 2.3 present PDU
header structure. Then, after the header, there is the payload.

Figure 2.3: Diagram of PDU header fields

2.3.1 Different type of PDUs

There is some type of BLE packets, and interesting types for us are :

1. ADV_IND

2. ADV_NONCONN_IND

3. ADV_SCAN_IND

2See section 2 of part B of volume 6 of Bluetooth specifications[7]

6 CHAPTER 2. UNDERSTANDING Bluetooth Low Energy PROTOCOL

4. SCAN_REQ

5. SCAN_RSP

The first one stands for Advertising Indications (ADV IND). It is used where a periph-
eral requests connections to any devices. The second one stands for Advertising Non-
Connectable Indications (ADV NONCONN IND). It is the same as (ADV IND), but it
didn’t request any connection. Advertising Scan Indications (ADV SCAN IND) is similar
to (ADV NONCONN IND), but there are additional information with Scan Responses
(SCAN RSP).[6]

For an advertisement PDU, there is an advertising address. It contains the advertiser’s
public address or a randomly generated address. Figure 2.4 contains a view of PDU
payload for an ADV * packet.

Figure 2.4: Diagram of fields of advertisement PDU payload

The SCAN RSP, which stands for Scan Response is used to answer a Scan Request
(SCAN REQ).[7]

2.3.2 Different kind of PDU payloads for advertising packets

In each packets of type ADV* (ADV_IND, ADV_NONCONN_IND, ...), there is a payload. Here
it’s explained each type of payload met during my experimentation:[11]

• 16 bits service class UUID

• 16 bits UUID service data

• Flags

• Manufacturer-specific data

With each payload, there is a size, coded on one byte. This field contains the total size
of the payload, including the size field itself.

It is important to take note each packet does not embed all of these payload types.

2.3. UNDERSTANDING BLE-LL PACKETS 7

16 bits service UUID

First, the class payload describes services that the device offers. Each service is identified
by an UUID.

Then, the data payload contains data associated with a service.

Flags

When the advertising packet is connectable, some flags are sent. These flags contain
information about the capacities of the device.

Manufacturer specific data

Contains custom data identified by a company identifier (0x004c stand for Apple for
example). The reference [5] contains a full list of identifiers by companies.

Opening...

There is still another type of payload, like ”Local Name”, to send the name of the device,
but it’s not used by our tags.

8 CHAPTER 2. UNDERSTANDING Bluetooth Low Energy PROTOCOL

Chapter 3

Analysis about Apple AirTags

3.1 Generalities about Apple AirTags

3.1.1 Operation for an average user

When a user buys an Apple AirTag, he has to pair it with his Apple ID account. Then,
the Apple AirTag is registered and entered into the Apple Find My network, and it can
be found by its owner. In figure 3.1, there are a view of the Apple AirTag.

To do that, the Apple Find My network is a giant mesh network, where each node is
other consumer devices, like iPhone, Mac, etc. Apple AirTag sends packets over the air,
to be caught by other Apple devices. Then, these devices send their localization with
a message like ”Hey! I have seen this Apple AirTag at Strasburgstrasse, in Zürich, at
2022/08/20.”[11]

Moreover, it uses the UWB technology to locate it even if the phone which makes the
report is far away.

Figure 3.1: An Apple AirTag

9

10 CHAPTER 3. ANALYSIS ABOUT Apple AirTags

3.1.2 Properties

An Apple AirTag has a NFC tag to let a potential finder scan it with a smartphone
possessing NFC.

Then, if we scan an unpaired Apple AirTag, we have this address :

https://found.apple.com/airtag?pid=5500

&b=00

&pt=004c

&fv=001012d0

&dg=00

&z=00

&bt=df5152442b02

&sr=HGJGM0UPP0GV

&bp=0013

So, the parameter bt is interesting, because it tells us the BLE MAC address of the Apple
AirTag : Here, it’s DF:51:52:44:2b:02.[3]

But, when it’s paired, the NFC-provided address changes :

https://found.apple.com/airtag?pid=5500

&b=00

&pt=004c

&fv=001012d0

&dg=00

&z=00

&pi=8a9304008c81ab5291a58e8eeaa95a

28e3206cde99064a1207811b23

The pi parameter stands for ”Public identity”, and is updated every 15 minutes by the
Apple AirTag itself.[3] Unfortunately, this value hasn’t sense for us, because it’s encrypted
information.

3.2 AirGuard

AirGuard is a project developed by the university of Darmstadt, in Germany.[8]. It’s an
open-sourced application that helps users to detect Apple Find My devices around them.

Because this project is open-source, I had been able to check how they find if an Apple
device is an Apple AirTag or not, and I have found this formula in the source code :

t = (d[2]&3̄0
16
) >> 41

1& stands for the bitwise binary AND operator, and >> for the binary right shift operator.

3.3. METHODOLOGY 11

Where there are :

• t : Device type number

• d : Manufacturer data payload of the sent packet as an array of bytes2. The [2]
operator means we take only the third byte of the payload3. The payload does not
contains the manufacturer identifier in the formula.

Then, if t = 1, the device is a paired Apple AirTag with an Apple ID account. So, it’s
findable with Apple Find My.

So, with this, I am able to filter received packets with Ubertooth to keep only Apple
AirTag packets.

3.3 Methodology

To begin with, it is important to explain the methodology I have followed. The goal is
to understand what kind of data is sent by Apple AirTags, and how we can be sure the
target device is an Apple AirTag.

Thereby, I have made four different captures to spy the behavior of Apple AirTag. So, I
have reproduced these situations to spy different behaviors of Apple AirTag :

• Unpaired when the iPhone is off

• Unpaired when the iPhone is on

• Pairing and paired when the iPhone is on

• Paired when the iPhone is off and it’s Apple Find My advertisement is disabled4

Then, I transformed captures files into CSV files, to process them in R, and create visu-
alizations.

3.4 Observations

3.4.1 When Apple AirTag is unpaired

When the Apple AirTag is unpaired, it sends packets at every 1
2
seconds. But, at approx-

imately every 50 seconds, the situation seems to be chaotic, with a packet sent almost

2uint8_t in C or C++
3We consider arrays are indexed from 0
4In iPhone when we turn it off, we can disable its Apple Find My advertisement. I have done that to

ensure the iPhone is completely off.

12 CHAPTER 3. ANALYSIS ABOUT Apple AirTags

instantly after the previous one, then the next is sent one second after the previous one.
Figure 3.2 shows that.

Figure 3.2: Graph showing time gap between two packets when the iPhone is off

Then, it is important to take note as I have written previously, there are a lot of wasted
packets, because of CRC errors. So, it’s normal to find one peak of 1 second, when around
this there are 1

2
second gap. It just shows at this time (On x axis), there was a malformed

packet.

In figure 3.3, we can see the acceleration of the time gap between two packets in this
capture.

Figure 3.3: Graph showing time gap acceleration between two packets when the iPhone
is off

3.5. SUMMARY 13

Captures when the iPhone was on are the same, but diagrams are available in appendix
A.

3.4.2 When is paired and closest to the enabled iPhone

The main difficulty in this topic is to find my Apple AirTag among others. In fact, the
MAC address I have found in the previous section is not usable, because the tag uses a
randomly generated MAC address to communicate with iPhone when it’s paired to an
Apple ID account.

So, I will consider the Apple AirTag5 that has sent the most amount of packets is good
because there is a significative gap between it and the others, as it shown in the table 3.4.

MAC address Amount of packets sent

4cc6de1514fd 1
600a91297705 7
6e36dfaeadec 37
7447e690f51b 10
e89edf65a795 9
ef07df5f8631 130

Figure 3.4: Table showing number of packet sent during the capture ”AirTagPairingAnd-
PairedWhenIPhoneOn.pcapng”

Thus, with this, we can conclude our Apple AirTag’s MAC address is EF:07:DF:5F:86:31.
But, it’s important to know this MAC address will change automatically every 15 minutes.

3.5 Summary

Finally, it’s useful to only detect paired Apple AirTags, because an unpaired Apple AirTag
doesn’t send data to the Apple Find My network, and can’t be used to track someone or
something.

Then, to detect a paired Apple AirTags, it’s required to check these points :

• The sent packet only contains one field: ”Manufacturer Specific” identified to Apple
(0x004c)

• The value of t = (d[2]&3̄0
16
) >> 4 equals 1 where d is the data embed by the

”Manufacturer Specific” field of advertising data of packet

5Apple AirTags are found with the technique described in 3.2 section

14 CHAPTER 3. ANALYSIS ABOUT Apple AirTags

Chapter 4

Analysis about Tiles

4.1 Generalities about Tiles

A tile is a BLE tracker, like Apple AirTag[14]. But, its way of working is different as
Apple AirTag. In fact, it uses its own tracking network which is not Apple Find My
network. In addition, its BLE packets are not the same as Apple AirTag. For the final
user, the real advantage is he doesn’t have to have an iPhone or another Apple device to
use it. The figure shows an example of a Tile tracker.

Figure 4.1: Example of Tile trackers

15

16 CHAPTER 4. ANALYSIS ABOUT TILES

Also, there is some partnership with brands, like Intel, to track some things, like laptops[13].
Then, this lets them put Tile chips into devices, to track those with the Tile finding net-
work.

4.2 Technical aspects

All advertising packets sent by tiles are the same: This is ADV_IND packets with only these
fields in this order :

• Flags

• 16 bits service class UUID

• 16 bits UUID service data

Finally, the packet’s size is 60 bytes. In the 16 bits UUID service class field, there are the
UUID of Tile1, which indicates to the device which receives the packet this object carries
a Tile service. Then, the 16 bits service data field carries information to track the tag.
This information is encrypted, and useless to know for us to test if there is a Tile tag
around the phone or not.

4.3 Detection of Tile tags

So, to detect if an advertisement packet is from a Tile, it’s only necessary to check if the
packet contains the 16 bits service class UUID, and the associated Tile UUID, which is
0xfeed in big-endian.

10xfeed, data are sent in little-endian, so in received packet, it’s 0xedfe.

Chapter 5

OpenHaystack

5.1 Introduction

Like AirGuard, OpenHaystack is a project from the University of Darmstadt, in Germany.
Here, the topic is to let users create hand-made tags which can be tracked by the Apple
Find My network.[10]

So, users can use different devices to create their tags with these:

• An ESP32 chip

• A device with a nRF51822 chip1

• A computer that runs Linux with Python and BLE availability

5.2 Setup of the experimentation

For us, this project could be interesting, because it lets us discover how Apple Find My
network works.

5.2.1 On the computer

To do that, I had to install a hackintosh virtual machine on my computer, because this
application needs a Mac computer to see reports to the Apple Find My network.

So, to do that, I have used QEMU-KVM to install Mac OS/X on my computer as a virtual
machine. Figure 5.1 shows that virtual machine running on my computer.

1SOC from Nordic Semiconductors with BLE features.

17

18 CHAPTER 5. OPENHAYSTACK

Figure 5.1: Mac OS/X Big Sur (version 11) running on QEMU-KVM

5.2.2 The fake tag’s setup

To create the fake tag, it was used a Raspberry Pi, which is a tiny computer that has a
size of a credit card (Figure 5.2). It uses an 1GHz single core CPU, 512 MB of RAM, and
has BLE.

5.3. EXPERIMENTATION 19

Figure 5.2: Raspberry Pi Zero W, the Raspberry Pi used to test OpenHaystack

On this, there is a Linux operating system, with a Python environment, to run the Python
script delivered by the OpenHaystack project to make an Apple Find My findable device.

Then, this script is very interesting, because it tells how works BLE transmissions for
non-Apple devices to be findable through the Apple Find My network.

5.3 Experimentation

With all tools ready, it’s easy to test OpenHaystack. So, to do that, a device was been
generated in the OpenHaystack application, on the hackintosh virtual machine.

Then, the parametrization of the Python script on the Raspberry Pi lets sends advertise-
ment packets for the generated tag. The required parameter is a key, generated by the
application on the Mac.

One execution of the script sends one advertisement, so it was required to make a Bash
loop to launch repeatedly the Python script. With a promenade in the street with the
Raspberry Pi powered by an external battery, and without an iPhone, we can see in figure
5.3 reporting data works fine. The taken route was from the ”Psychologisches Institut der
Universität Zürich”, at the bottom left on the map, to the ”Oerlikerhus” tram station, on
the top right of the map, and come back to the university.

20 CHAPTER 5. OPENHAYSTACK

Figure 5.3: Test of OpenHaystack when walking in Oerlikon, at Zürich

5.4. SUMMARY 21

Each pin stands for each report to Apple’s servers by walkers’ iPhones.2

5.4 Summary

With these tests and thanks to the University of Darmstadt’s work, it’s easier to check if a
BLE advertising packet which contains a ”Manufacturer specific” field with the company
ID of Apple is targeted to the Apple Find My tracking network.

However, it’s important to remark the OpenHaystack tag is not findable through the ”Find
My” application on the iPhone, and it’s not linked to any Apple ID account. So, someone
with some knowledge in computer science can craft a tag to track a victim, without any
warning on his phone.

So, according to the Python script, if an Apple’s manufacturer-specific advertising data
has these characteristics, it’s a packet to track the device through the Apple Find My
network:[10]

• Its length is 30 (1E in hexadecimal)

• It begins with the sequence ”1219”

2Appendix B explains how was generated this image.

22 CHAPTER 5. OPENHAYSTACK

Chapter 6

Chipolo One Spot

6.1 Introduction

Chipolo one spot is an item tracker made by Chipolo. It’s usable only with Apple devices
because it works with the Apple Find My network. Figure 6.1 shows what is it.

Figure 6.1: Chipolo one spot tag

6.2 Strategy to detect it in the air

The goal was to find a way to detect Chipolo trackers in the air, so as to filter the
Wireshark capture to show only packets sent by it.

In the lab environment, there is a lot of Apple device, which send Apple Find My data.
So, I had to find a way to clearly identify the Chipolo tag among other devices. To do
that, a strategy could be to power off the iPhone when the tag is paired to its Apple ID
account, and do a packet captures for 5 minutes1. During this capture, between 60 and
240 seconds, the tag’s battery was removed.

1300 seconds

23

24 CHAPTER 6. CHIPOLO ONE SPOT

Then, with the capture and the R language, it’s easy to aggregate devices by MAC
addresses. After that, to see what device has stopped to send BLE packets between 60
seconds and 240 seconds2, it’s a solution to calculate the time gap between the nth and
the (n− 1)th packet. Then, it’s easy to plot, on the x axis, the time spent3, and on the y
axis, the time gap.

With this, there is an interesting plot in figure 6.2. There is a gap of 179 seconds for
t = 241. It corresponds to the moment when the battery was pushed in the tag to power
it on. It’s coherent with the experimentation, because 240− 60 = 180.

Figure 6.2: Time gap between two packets when the tag was unpowered between 60 sec.
and 240 sec.

6.3 Experimentation to fake it with the Raspberry Pi

Now, to be sure it’s a good way, it could be interesting to try to send the same data the
Chipolo sends. To do that, it’s important to remove its battery, and send its packets all
at the same time intervals (Here, one packet by second for three minutes).

With a walk in the street with the Raspberry Pi powered by an external battery and
sending Chipolo’s packets and the original Chipolo disabled, we can test if effectively the
MAC address was the good one or not.

Figure 6.3 shows the Apple Find My application on the iPhone after the walk. It tells the
tag was seen for the last time at Bahnhof Oerlikon Ost4 tramway station. So, the found
device was the good one. The dark blue disk near ”Universität Zürich - Psychologisches
Institut” is the position of the iPhone which stayed at the lab during the experimentation.

2Duration of power off of Chipolo tag
3From 0 to 300
4Oerlikon train station east

6.3. EXPERIMENTATION TO FAKE IT WITH THE RASPBERRY PI 25

Figure 6.3: Result on Apple Find My application after walking in the street with the
Raspberry Pi

26 CHAPTER 6. CHIPOLO ONE SPOT

6.4 Generalization

After that, it must be found a better way to see if an Apple BLE advertising packet
is from a Chipolo tag or not. To do that, we need to collect more data about Chipolo
tags, and a manner to do that is to disband it and pair it again to the Apple ID account
associated with the iPhone.

Then, it was found an interesting thing: All of the Chipolo tags’ manufacturer-specific ad-
vertising data always begins with 121920. It corresponds to the beginning of the sequence
found in the previous chapter5.

After some tests, it turns out that is a good way to find Chipolo tags. To check that,
it’s necessary to make a new capture with the real tag powered on during all of that.
Therefore, the Raspberry Pi has to be disabled. Then, with a filter that considers this
parameter, Wireshark displays only packets from the Chipolo tag. It’s trusted by doing
the same experimentation as the previous section6.

6.5 Summary

Finally, these characteristics let us distinguish if a sent packet is from a Chipolo One Spot
tag, or not :

• The sent packet must have a ”Manufacturer specific” field

• The length of this field must equal 307

• The company ID of this field must be Apple’s one8

• The data field begins by 121920

5See chapter 5
6Section 6.3
71e in hexadecimal
80x004c in big-endian

Chapter 7

Samsung Galaxy SmartTag+

7.1 Introduction

The Samsung Galaxy SmartTag+ is another item-tracking device designed to work only
with Samsung Galaxy phones. It’s a Tile1 competitor device.[12]

Like Tile and Apple AirTag, the Samsung Galaxy SmartTag+ uses an offline finding
network, where every Samsung device, such as phones, tablets, etc. sends reports to
Samsung’s servers when it ”sees” a device via BLE.

Figure 7.1 shows Samsung SmartTags. The SmartTag+ has the same visual as SmartTag.
The difference between the two is the SmartTag+ uses UWB to estimate the distance
between the tag and the phone and tries to find its location if it’s possible.

1Described in chapter 4

27

28 CHAPTER 7. SAMSUNG GALAXY SMARTTAG+

Figure 7.1: Samsung Galaxy SmartTags

7.2 Analysis

To begin with, it’s important to take note of the fact I haven’t a Samsung Galaxy device
when I made this analysis, so I was unable to pair it to a Samsung account.

But, with the technique used to detect the Chipolo OneSpot among other BLE devices2,
it’s possible to detect the unpaired Samsung SmartTag+ among other devices.

Then, with that, there is a relevant device in the captures. All packets sent by this device
contain these fields :

• A flags field

• An incomplete 16-bit Service Class UUIDs3

• The associated Service Data field for the UUID 0xfd59

In the BLE 16-bit UUID reference, the UUID stands for ”Samsung Electronics Co.,
Ltd.”.[1] But, there are no more precise information about this, except that there are
eight UUIDs for Samsung in the document.

2More details at section 6.2 of chapter 6
3Incomplete means the packet does not carry all of the supported UUIDs of the tag.

7.3. SUMMARY 29

7.3 Summary

To conclude, it looks like packets sent by a Samsung SmartTag+ (and probably SmartTag)
are crafted like this template, and it could be a way to see Samsung SmartTags around a
generic phone.

30 CHAPTER 7. SAMSUNG GALAXY SMARTTAG+

Chapter 8

Summary and Conclusions

8.1 Summary

To conclude, during this internship, I worked on the privacy issue of item trackers. In
fact, it’s easy to hide a tag in a bag, in a car, etc. So, it was decided to develop a Flutter
application to let users detect if there are BLE devices around them.

To find a way to detect those, it was used these kinds of tags :

• Apple AirTag

• Tiles

• OpenHaystack

• Chipolo One Spot

• Samsung Galaxy SmartTag+

8.2 How to detect each tags ?

8.2.1 Apple AirTag

The sent packet must match these points :

• The sent packet only contains one field: ”Manufacturer Specific” identified to Apple
(0x004c)

• The value of t = (d[2]&3̄0
16
) >> 4 equals 1 where d is the data embed by the

”Manufacturer Specific” field of advertising data of packet

31

32 CHAPTER 8. SUMMARY AND CONCLUSIONS

8.2.2 Tiles

The sent packet must have these fields in this order :

• Flags

• 16 bits service class UUID

• 16 bits UUID service data

Then, the UUID of the Tile service is 0xfeed.

8.2.3 OpenHaystack and Chipolo One Spot

A packet sent by a Chipolo One Spot tag has these characteristics :

• The sent packet has a ”Manufacturer specific” field

• The length of this field equals 30 in decimal

• The company ID of this field is 0x004c in big-endian

• The data field begins by 12191

Also, experimentation of OpenHaystack shows us there could be devices that are tracked
by the Apple Find My network, even if those devices are not registered to an Apple ID
account. So, handmade devices such as OpenHaystack ”tags” are not shown on the Apple
Find My application. This fact could be a privacy issue if someone tries to make an
OpenHaystack tag with a chip.

8.2.4 Samsung Galaxy SmartTag+

All packets sent by the Samsung Galaxy SmartTag+ contain these fields :

• A flags field

• An incomplete 16-bit Service Class UUIDs

• The associated Service Data field for the UUID 0xfd59

1In the case of Chipolo One Spot, it begins by 121920.

8.3. CONCLUSION 33

8.3 Conclusion

With the information provided previously, it could be developed an application to detect
and advise users there are foreign tags around them.

About this application, it could be interesting to let users add their tags, to avoid the risk
of fake-negative tag detection.

To conclude, this internship was a very good experience for me, because I discovered the
world of academic research, and doing a Ph.D. may interest me. Also, I discovered the
BLE communications topic.

34 CHAPTER 8. SUMMARY AND CONCLUSIONS

Bibliography

[1] 16-bit UUID Numbers Document.pdf. https://specificationrefs.bluetooth.

com/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf.

[2] AirTag. https://www.apple.com/airtag/.

[3] Apple AirTag Reverse Engineering - Adam Catley. https://adamcatley.com/

AirTag.

[4] Bluetooth 5 variations complicate PHY testing - EDN. https://www.edn.com/

bluetooth-5-variations-complicate-phy-testing/.

[5] Company Identifiers. https://www.bluetooth.com/specifications/

assigned-numbers/company-identifiers/.

[6] Bluetooth Low Energy -It Starts with Advertising. https://www.bluetooth.com/

blog/bluetooth-low-energy-it-starts-with-advertising/, February 2017.

[7] Bluetooth specifications. Core Specification Working Group, July 2021. Revision 5.3.

[8] AirGuard - AirTag tracking protection. https://github.com/seemoo-lab/

AirGuard, August 2022. original-date: 2021-07-12T09:49:25Z.

[9] Cyclic redundancy check. https://en.wikipedia.org/w/index.php?title=

Cyclic_redundancy_check&oldid=1095008993, June 2022. Page Version ID:
1095008993.

[10] OpenHaystack. https://github.com/seemoo-lab/openhaystack, August 2022.
original-date: 2021-02-22T13:23:06Z.

[11] Mohammad Afaneh. How Bluetooth Low Energy Works: Ad-
vertisements (Part 1) | Novel Bits. https://novelbits.io/

bluetooth-low-energy-advertisements-part-1/, April 2020.

[12] Dieter Bohn. Samsung’s Galaxy SmartTag is a $29.99 Tile
competitor. https://www.theverge.com/2021/1/14/22227621/

samsung-galaxy-smarttag-price-release-date-tile-locator, January 2021.

[13] Monica Chin. Tile announces partnership with Intel to track
missing PCs. https://www.theverge.com/2020/5/7/21250464/

tile-intel-partnership-release-date-news-features-laptop-tracker-hp-dragonfly,
May 2020.

A

https://specificationrefs.bluetooth.com/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf
https://specificationrefs.bluetooth.com/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf
https://www.apple.com/airtag/
https://adamcatley.com/AirTag
https://adamcatley.com/AirTag
https://www.edn.com/bluetooth-5-variations-complicate-phy-testing/
https://www.edn.com/bluetooth-5-variations-complicate-phy-testing/
https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/
https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/
https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/
https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/
https://github.com/seemoo-lab/AirGuard
https://github.com/seemoo-lab/AirGuard
https://en.wikipedia.org/w/index.php?title=Cyclic_redundancy_check&oldid=1095008993
https://en.wikipedia.org/w/index.php?title=Cyclic_redundancy_check&oldid=1095008993
https://github.com/seemoo-lab/openhaystack
https://novelbits.io/bluetooth-low-energy-advertisements-part-1/
https://novelbits.io/bluetooth-low-energy-advertisements-part-1/
https://www.theverge.com/2021/1/14/22227621/samsung-galaxy-smarttag-price-release-date-tile-locator
https://www.theverge.com/2021/1/14/22227621/samsung-galaxy-smarttag-price-release-date-tile-locator
https://www.theverge.com/2020/5/7/21250464/tile-intel-partnership-release-date-news-features-laptop-tracker-hp-dragonfly
https://www.theverge.com/2020/5/7/21250464/tile-intel-partnership-release-date-news-features-laptop-tracker-hp-dragonfly

B BIBLIOGRAPHY

[14] Trevor Long. Tile trackers get slim and sticky with
new products for 2019. https://eftm.com/2019/10/

tile-trackers-get-slim-and-sticky-with-new-products-for-2019-66642,
October 2019.

https://eftm.com/2019/10/tile-trackers-get-slim-and-sticky-with-new-products-for-2019-66642
https://eftm.com/2019/10/tile-trackers-get-slim-and-sticky-with-new-products-for-2019-66642

Glossary

Apple AirTag Apple AirTag is a tracking device released by Apple in April 2021. It uses
Bluetooth Low Energy (BLE) and Ultra Wide Band (UWB) to work. Because of
it’s small size, it can be used to do criminal actions, like stalking or thefting cars..
1, 3, 9–11, 13, 15, 27

R R is a programming language to do some statistic analysis, and make some charts and
visualizations. It could be used with RStudio, a software which help programmer
to use the language.. 4, 11, 24

CRC Cyclic Redundancy Check (CRC) is an error-detecting code which is integrated in
each packets to determine if the packet is good or not. If there are a CRC error, the
packet can’t be processed, and is rejected.. 4, 5

Apple ID An account stored in Apple’s servers to centralize user’s information betwenn
Apple devices (Such as Mac with Mac OS/X, iPad, iPhone, etc.). 9, 11, 13, 21, 23,
26, 32

Apple Find My A network between Apple devices to ensure their tracking when one of
these is lost, or theft.. 9–11, 13, 15, 17, 19, 21, 23–25, 32, G

NFC Near Field Communication (NFC) is a technology to communicate with a device
by bringing it beghind another device (For example, a smartphone). The goal is the
bringed device provides information, like a web address, to give informations about
the device. Usually, it’s a technology used in verry small devices, such as tracking
tags. Moreover, it’s the technology used by credit cards to pay without contact.. 10

MAC address Media Access Control (MAC) is a 48 bit address (6 bytes) used to identify
a device. It should be unique in the world, but it can be not if the device uses a
rendomly generated address or an user-provided address.. 10, 13, 24

SOC A System On a Chip (SOC) is a chip which contains everithing to run a firmware
and work as a tiny computer : A CPU, inputs and outputs, RAM, etc. It can
contains extra peripherals, like sensors, antenas, Read-Only Memory (ROM) to
store a firmware, etc.. 17

hackintosh An hackintosh is a fake Apple Macintosh computer. In fact, it’s a standard
computer with Mac OS/X installed on it, the Macintosh’s operating system. Finally,
the word ”hackintosh” is a combination of ”Hack” and ”Macintosh”.. 17, 19, H, K

C

D Glossary

QEMU-KVM QEMU-Kernel-based Virtual Machine (KVM) is native virtualization tech-
nology which works on Linux-based operating systems. It can emulate lot of com-
puter architectures.. 17, 18, G

Bash Bash, for Bourne-Again SHell, is a command-line interpreter for Unix systems (Like
Linux). It’s the default shell on most Linux systems, like Raspbian, the reference
Linux system of Raspberry Pi. Then, it’s also a programming language used to
automatize some operation on theses systems.. 19

UWB Ultra Wide Band (UWB) is a wireless technology where devices send very short
bursts of waves. Like BLE, it’s a technology based on low energy consumtion. It can
be used to estimate the distance between two devices by using signal propagation
time. Therefore, with three UWB devices, it’s possible to locate another UWB
device by triangluation.. 27

firmware A firmware is an embedded software on a device to let it working. It can be
updated to have new features, more security, etc.. C

Acronyms

CSG Comunication Systems Group. i

BLE Bluetooth Low Energy. iii, C, D, 1, 3–8, 10, 15, 17–19, 21, 24, 26–28, 31, 33, G

LL Link-Layer. iii, 5, 7

PDU Protocol Data Unit. iii, 5, 6, G

IOT Internet Of Things. 3

CRC Cyclic Redundancy Check. C, 4, 5, 12

UUID Universally Unique IDentifier. 6, 7, 16, 28, 32

UWB Ultra Wide Band. C, D, 9, 27

NFC Near Field Communication. C, 10

MAC Media Access Control. C, 10, 13, 24

SOC System On a Chip. C, 17

KVM Kernel-based Virtual Machine. D, 17, 18, G

CPU Central Processing Unit. C, 18

RAM Random Access Memory. C, 18

ROM Read-Only Memory. C

E

F Acronyms

List of Figures

2.1 Ubertooth One USB key . 4

2.2 Diagram of BLE-LE packet . 5

2.3 Diagram of PDU header fields . 5

2.4 Diagram of fields of advertisement PDU payload 6

3.1 An Apple AirTag . 9

3.2 Graph showing time gap between two packets when the iPhone is off . . . 12

3.3 Graph showing time gap acceleration between two packets when the iPhone
is off . 12

3.4 Table showing number of packet sent during the capture ”AirTagPairingAnd-
PairedWhenIPhoneOn.pcapng” . 13

4.1 Example of Tile trackers . 15

5.1 Mac OS/X Big Sur (version 11) running on QEMU-KVM 18

5.2 Raspberry Pi Zero W, the Raspberry Pi used to test OpenHaystack 19

5.3 Test of OpenHaystack when walking in Oerlikon, at Zürich 20

6.1 Chipolo one spot tag . 23

6.2 Time gap between two packets when the tag was unpowered between 60
sec. and 240 sec. 24

6.3 Result on Apple Find My application after walking in the street with the
Raspberry Pi . 25

7.1 Samsung Galaxy SmartTags . 28

A.1 Graph showing time gap between two packets when the iPhone is on . . . I

G

H LIST OF FIGURES

A.2 Graph showing time gap acceleration between two packets when the iPhone
is on . J

B.1 Raw reports on OpenHaystack in the hackintosh virtual machine K

Appendix A

Time diagrams of packet transmitted by
when unpaired and iPhone on

Figure A.1: Graph showing time gap between two packets when the iPhone is on

I

JAPPENDIX A. TIME DIAGRAMS OF PACKET TRANSMITTED BY WHENUNPAIRED AND IPHONEON

Figure A.2: Graph showing time gap acceleration between two packets when the iPhone
is on

Appendix B

Generation of the picture of
OpenHaystack reports

Because the used Mac system is not a genuine Macintosh, there are some limitations. And
one of those is Apple map does not work. So, I had to superpose reports made by the
walkers’ iPhones on the google map by fitting pins with the taken route, and the result
was accurate with the reality. The figure shows B.1 the real view on the application on
the left, and the corresponding map on the right.

Figure B.1: Raw reports on OpenHaystack in the hackintosh virtual machine

K

	Acknowledgments
	Introduction
	Motivation
	Description of Work

	Understanding BLE protocol
	Goal
	Capturing and analyzing packets
	Capturing packets
	Cleaning captures files

	Understanding BLE-LL packets
	Different type of PDUs
	Different kind of PDU payloads for advertising packets

	Analysis about Apple AirTags
	Generalities about Apple AirTags
	Operation for an average user
	Properties

	AirGuard
	Methodology
	Observations
	When Apple AirTag is unpaired
	When is paired and closest to the enabled iPhone

	Summary

	Analysis about Tiles
	Generalities about Tiles
	Technical aspects
	Detection of Tile tags

	OpenHaystack
	Introduction
	Setup of the experimentation
	On the computer
	The fake tag's setup

	Experimentation
	Summary

	Chipolo One Spot
	Introduction
	Strategy to detect it in the air
	Experimentation to fake it with the Raspberry Pi
	Generalization
	Summary

	Samsung Galaxy SmartTag+
	Introduction
	Analysis
	Summary

	Summary and Conclusions
	Summary
	How to detect each tags ?
	Apple AirTag
	Tiles
	OpenHaystack and Chipolo One Spot
	Samsung Galaxy SmartTag+

	Conclusion

	Bibliography
	Glossary
	Acronyms
	List of Figures
	Time diagrams of packet transmitted by when unpaired and iPhone on
	Generation of the picture of OpenHaystack reports

